Primary Decomposition and the Fractal Nature of Knot Concordance
نویسندگان
چکیده
For each sequence P = (p1(t), p2(t), . . . ) of polynomials we define a characteristic series of groups, called the derived series localized at P. Given a knot K in S, such a sequence of polynomials arises naturally as the orders of certain submodules of a sequence of higher-order Alexander modules of K. These group series yield filtrations of the knot concordance group that refine the (n)-solvable filtration. We show that the quotients of successive terms of these refined filtrations have infinite rank. These results also suggest higher-order analogues of the p(t)-primary decomposition of the algebraic concordance group. We use these techniques to give evidence that the set of smooth concordance classes of knots is a fractal set. We also show that no Cochran-Orr-Teichner knot is concordant to any Cochran-Harvey-Leidy knot.
منابع مشابه
Stable Concordance of Knots in 3–manifolds
Knots and links in 3-manifolds are studied by applying intersection invariants to singular concordances. The resulting link invariants generalize the Arf invariant, the mod 2 Sato-Levine invariants, and Milnor’s triple linking numbers. Besides fitting into a general theory of Whitney towers, these invariants provide obstructions to the existence of a singular concordance which can be homotoped ...
متن کاملThe Application of fractal dimension and morphometric properties of drainage networks in the analysis of formation sensibility in arid areas (Case Study, Yazd-Ardakan Basin)
Introduction: Many natural phenomena have many variables that make it difficult to find relationships between them using common mathematical methods. This problem, along with the impossibility of measuring all elements of nature, has led to a major evolution in the way of understanding and explaining phenomena. In this way, one can use the fractal geometry with the theory that many natural phen...
متن کاملKnot theory of complex plane curves
The primary objects of study in the “knot theory of complex plane curves” are C-links: links (or knots) cut out of a 3-sphere in C2 by complex plane curves. There are two very different classes of C-links, transverse and totally tangential. Transverse C-links are naturally oriented. There are many natural classes of examples: links of singularities; links at infinity; links of divides, free div...
متن کاملClassical quasi-primary submodules
In this paper we introduce the notion of classical quasi-primary submodules that generalizes the concept of classical primary submodules. Then, we investigate decomposition and minimal decomposition into classical quasi-primary submodules. In particular, existence and uniqueness of classical quasi-primary decompositions in finitely generated modules over Noetherian rings are proved. More...
متن کاملPedotransfer functions for estimating soil moisture content using fractal parameters in Ardabil province
Extended abstract 1- Introduction Soil moisture curve is an important characteristic of soil and its measurement is necessary for determining soil available water content for plant, evapotranspiration and irrigation planning. Direct measurements of soil moisture coefficients are time-consuming and costly. But it is possible to estimate these characteristics from readily available soil propert...
متن کامل